Selected Solution to Final Exam

Answer all six questions.

1. Let f be a C^{1}-function in \mathbb{R}^{3}.
(a) (10 points) Suppose that $f\left(x_{0}, y_{0}, z_{0}\right)=0$ and $f_{z}\left(x_{0}, y_{0}, z_{0}\right) \neq 0$. Using the inverse function theorem to prove that there is an open disk D containing $\left(x_{0}, y_{0}\right)$ and a C^{1}-function φ on D satisfying $\varphi\left(x_{0}, y_{0}\right)=z_{0}$ such that $f(x, y, \varphi(x, y))=0$ for all $(x, y) \in D$.
(b) (5 points) Let $Z(f)=\{(x, y, z): f(x, y, z)=0\}$ be the zero set of f. Assume that its gradient is nonvanishing, that is, $\nabla f \neq(0,0,0)$ everywhere in \mathbb{R}^{3}. Show that $Z(f)$ is a nonwhere dense set in \mathbb{R}^{3}.
(c) (5 points) Can we find a sequence of C^{1}-functions $\left\{f_{k}\right\}$ with non-vanishing gradient everywhere such that $\mathbb{R}^{3}=\bigcup_{k=1}^{\infty} Z\left(f_{k}\right)$?

Solution. (a) See Notes.
(b) First of all, clearly $Z(f)$ is a closed set (as long as f is continuous.) Let (x, y, z) be a point on $Z(f)$. WLOG we may assume $f_{z} \neq 0$ at this point, so near this point $Z(f)$ is given by the graph $(x, y, \varphi(x, y))$. It follows that for small $\varepsilon \neq 0$, the points $(x, y, \varphi(x, y)+\varepsilon)$ do not belong to $Z(f)$. It shows that $Z(f)$ cannot contain a ball in \mathbb{R}^{3}. Hence it is nowhere dense.
(c) This is a direct consequence os Baire's category theorem, since each $Z\left(f_{k}\right)$ is closed and nowhere dense, and on the other hand, \mathbb{R}^{3} is complete.
2. (a) (10 points) State the theorem on the perturbation of identity.
(b) (10 points) Use (a) to show that the equation $x \sin x-x^{4}+x=-0.02$ has a root near $x=0$.
Solution. See Notes.
3. Consider the IVP: $x^{\prime}=F(t, x), x(0)=0$, where F is a nonnegative, continuous function in \mathbb{R}^{2} satisfying the Lipschitz condition $\left|F\left(t, x_{2}\right)-F\left(t, x_{1}\right)\right| \leq L\left|x_{2}-x_{1}\right|,\left(t, x_{1}\right),\left(t, x_{2}\right) \in \mathbb{R}^{2}$.
(a) (10 points) Show that if $x(t)$ is a solution of this IVP on $[0, c)$ for some finite $c>0$, then it can be extended to be a solution on $[0, c]$ unless $x(t) \uparrow \infty$ as $t \uparrow c$.
(b) (10 points) Assume further that $F(t, x) \leq C(1+x), \forall(t, x) \in \mathbb{R}^{2}$, for some constant C. Show that this IVP admits a solution in $[0, \infty)$.

Solution. (a) See Notes. Or, as we have extra assumption F is nonnegative, the argument can be simplified as follows: From $x^{\prime}=F \geq 0$ we see that x is increasing. Hence, $z=\lim _{t \rightarrow c^{-}} x(t)$ always exists unless x does not tend to ∞ at c. Extend x from $[0, c)$ to $[0, c]$ by defining $x(c)=z$. By letting $t \rightarrow c^{-}$in the relation

$$
x(t)=\int_{0}^{t} F(s, x(s)) d s, \quad t \in[0, c)
$$

the LHS tends to $z=x(c)$ and the RHS tends to $\int_{0}^{c} F(s, x(s)) d s$. Hence

$$
x(c)=z=\int_{0}^{c} F(s, x(s)) d s
$$

so x solves the equation also at $t=c$.
Solution Integrating the relation $x^{\prime} \leq C(1+x)$ we get $x(t) \leq e^{C t}-1$ as long as the solution exists. Let $c^{*}=\sup \{c: x$ exists on $[0, c)\}$. By uniqueness of IVP, the solution x exists on $\left[0, c^{*}\right)$. If c^{*} is finite, by (a) it extends to be a solution on $\left[0, c^{*}\right]$. Then by solving the IVP taking c^{*} as the initial time, x extends beyonds c^{*}, contradicting the definition of c^{*}. We conclude that c^{*} is ∞, done.
4. (10 points) Show that $\{\cos n x: x \in[0,2 \pi], n \geq 1\}$ does not have any convergent subsequence in $\|\cdot\|_{\infty}$.
Solution. Suppose on the contrary there is convergent subsequence $\left\{\cos n_{k} x\right\}$ we want to draw a contradiction. Since $\left\{\cos n_{k} x\right\}$ is convergent, it is precompact. By Arzela's theorem this subsequence is also equicontinuous. For $\varepsilon=1 / 2$, there is some δ such that $\left|\cos n_{k} x-\cos n_{k} y\right|<1 / 2$ wherever $|x-y|<\delta$ for all sufficiently large n_{k}. Now, take $x=0$ and $y=\pi /\left(2 n_{k}\right)$. For large $n_{k},|y-0|<\delta$, but $\left|\cos n_{k} 0-\cos n_{k} \pi /\left(2 n_{k}\right)\right|=1>1 / 2$, contradiction holds.
5. Let $K \in C([a, b] \times[a, b])$ and define the operator T by

$$
(T f)(x)=\int_{a}^{b} K(x, y) f(y) d y .
$$

(a) (10 points) Show that T maps $C[a, b]$ to itself.
(b) (10 points) Show that whenever $\left\{f_{n}\right\}$ is a bounded sequence in $C[a, b],\left\{T f_{n}\right\}$ contains a convergent subsequence in the sup-norm.

Solution. See Exercise.
6. (10 points) Show that there exists a unique nonnegative solution h to the integral equation

$$
h(x)=1+\frac{1}{2} \int_{0}^{1} \frac{1}{1+x+y} h(y) d y,
$$

in $C[0,1]$. Suggestion: Work on the space $X=\{h \in C[0,1]: h(x) \geq 0\}$.
Solution. Define

$$
T h(x)=1+\frac{1}{2} \int_{0}^{1} \frac{1}{1+x+y} h(y) d y
$$

and verify it is a contraction. However, in order to apply the contraction mapping principle, you need to explain X is a complete metric space under the sup-norm, and (b) $T h \in X$. Many of you forgot to point out $T h \in C[0,1]$.

