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Selected Solution to Final Exam

Answer all six questions.

1. Let f be a C1-function in R3.

(a) (10 points) Suppose that f(x0, y0, z0) = 0 and fz(x0, y0, z0) 6= 0. Using the inverse
function theorem to prove that there is an open disk D containing (x0, y0) and a
C1-function ϕ on D satisfying ϕ(x0, y0) = z0 such that f(x, y, ϕ(x, y)) = 0 for all
(x, y) ∈ D.

(b) (5 points) Let Z(f) = {(x, y, z) : f(x, y, z) = 0} be the zero set of f . Assume that its
gradient is nonvanishing, that is, ∇f 6= (0, 0, 0) everywhere in R3. Show that Z(f) is
a nonwhere dense set in R3.

(c) (5 points) Can we find a sequence of C1-functions {fk} with non-vanishing gradient
everywhere such that R3 =

⋃∞
k=1 Z(fk)?

Solution. (a) See Notes.

(b) First of all, clearly Z(f) is a closed set (as long as f is continuous.) Let (x, y, z) be a
point on Z(f). WLOG we may assume fz 6= 0 at this point, so near this point Z(f) is given
by the graph (x, y, ϕ(x, y)). It follows that for small ε 6= 0, the points (x, y, ϕ(x, y) + ε) do
not belong to Z(f). It shows that Z(f) cannot contain a ball in R3. Hence it is nowhere
dense.

(c) This is a direct consequence os Baire’s category theorem, since each Z(fk) is closed
and nowhere dense, and on the other hand, R3 is complete.

2. (a) (10 points) State the theorem on the perturbation of identity.

(b) (10 points) Use (a) to show that the equation x sinx − x4 + x = −0.02 has a root
near x = 0.

Solution. See Notes.

3. Consider the IVP: x′ = F (t, x), x(0) = 0, where F is a nonnegative, continuous function in
R2 satisfying the Lipschitz condition |F (t, x2)−F (t, x1)| ≤ L|x2−x1|, (t, x1), (t, x2) ∈ R2.

(a) (10 points) Show that if x(t) is a solution of this IVP on [0, c) for some finite c > 0,
then it can be extended to be a solution on [0, c] unless x(t) ↑ ∞ as t ↑ c.

(b) (10 points) Assume further that F (t, x) ≤ C(1 + x),∀(t, x) ∈ R2, for some constant
C. Show that this IVP admits a solution in [0,∞).

Solution. (a) See Notes. Or, as we have extra assumption F is nonnegative, the argument
can be simplified as follows: From x′ = F ≥ 0 we see that x is increasing. Hence,
z = limt→c− x(t) always exists unless x does not tend to ∞ at c. Extend x from [0, c) to
[0, c] by defining x(c) = z. By letting t→ c− in the relation

x(t) =

∫ t

0
F (s, x(s)) ds , t ∈ [0, c),

the LHS tends to z = x(c) and the RHS tends to
∫ c
0 F (s, x(s)) ds. Hence

x(c) = z =

∫ c

0
F (s, x(s)) ds,
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so x solves the equation also at t = c.

Solution Integrating the relation x′ ≤ C(1 + x) we get x(t) ≤ eCt − 1 as long as the
solution exists. Let c∗ = sup{c : x exists on [0, c)}. By uniqueness of IVP, the solution x
exists on [0, c∗). If c∗ is finite, by (a) it extends to be a solution on [0, c∗]. Then by solving
the IVP taking c∗ as the initial time, x extends beyonds c∗, contradicting the definition of
c∗. We conclude that c∗ is ∞, done.

4. (10 points) Show that {cosnx : x ∈ [0, 2π], n ≥ 1} does not have any convergent
subsequence in ‖ · ‖∞.

Solution. Suppose on the contrary there is convergent subsequence {cosnkx} we want
to draw a contradiction. Since {cosnkx} is convergent, it is precompact. By Arzela’s
theorem this subsequence is also equicontinuous. For ε = 1/2, there is some δ such that
| cosnkx−cosnky| < 1/2 wherever |x−y| < δ for all sufficiently large nk. Now, take x = 0
and y = π/(2nk). For large nk, |y − 0| < δ, but | cosnk0 − cosnkπ/(2nk)| = 1 > 1/2,
contradiction holds.

5. Let K ∈ C([a, b]× [a, b]) and define the operator T by

(Tf)(x) =

∫ b

a
K(x, y)f(y)dy.

(a) (10 points) Show that T maps C[a, b] to itself.

(b) (10 points) Show that whenever {fn} is a bounded sequence in C[a, b], {Tfn} contains
a convergent subsequence in the sup-norm.

Solution. See Exercise.

6. (10 points) Show that there exists a unique nonnegative solution h to the integral equation

h(x) = 1 +
1

2

∫ 1

0

1

1 + x+ y
h(y) dy,

in C[0, 1]. Suggestion: Work on the space X = {h ∈ C[0, 1] : h(x) ≥ 0}.
Solution. Define

Th(x) = 1 +
1

2

∫ 1

0

1

1 + x+ y
h(y) dy

and verify it is a contraction. However, in order to apply the contraction mapping principle,
you need to explain X is a complete metric space under the sup-norm, and (b) Th ∈ X.
Many of you forgot to point out Th ∈ C[0, 1].


