Selected Solution to Final Exam

Answer all six questions.

- 1. Let f be a C^1 -function in \mathbb{R}^3 .
 - (a) (10 points) Suppose that $f(x_0, y_0, z_0) = 0$ and $f_z(x_0, y_0, z_0) \neq 0$. Using the inverse function theorem to prove that there is an open disk D containing (x_0, y_0) and a C^1 -function φ on D satisfying $\varphi(x_0, y_0) = z_0$ such that $f(x, y, \varphi(x, y)) = 0$ for all $(x, y) \in D$.
 - (b) (5 points) Let $Z(f) = \{(x, y, z) : f(x, y, z) = 0\}$ be the zero set of f. Assume that its gradient is nonvanishing, that is, $\nabla f \neq (0, 0, 0)$ everywhere in \mathbb{R}^3 . Show that Z(f) is a nonwhere dense set in \mathbb{R}^3 .
 - (c) (5 points) Can we find a sequence of C^1 -functions $\{f_k\}$ with non-vanishing gradient everywhere such that $\mathbb{R}^3 = \bigcup_{k=1}^{\infty} Z(f_k)$?

Solution. (a) See Notes.

(b) First of all, clearly Z(f) is a closed set (as long as f is continuous.) Let (x, y, z) be a point on Z(f). WLOG we may assume $f_z \neq 0$ at this point, so near this point Z(f) is given by the graph $(x, y, \varphi(x, y))$. It follows that for small $\varepsilon \neq 0$, the points $(x, y, \varphi(x, y) + \varepsilon)$ do not belong to Z(f). It shows that Z(f) cannot contain a ball in \mathbb{R}^3 . Hence it is nowhere dense.

(c) This is a direct consequence os Baire's category theorem, since each $Z(f_k)$ is closed and nowhere dense, and on the other hand, \mathbb{R}^3 is complete.

- 2. (a) (10 points) State the theorem on the perturbation of identity.
 - (b) (10 points) Use (a) to show that the equation $x \sin x x^4 + x = -0.02$ has a root near x = 0.

Solution. See Notes.

- 3. Consider the IVP: x' = F(t, x), x(0) = 0, where F is a nonnegative, continuous function in \mathbb{R}^2 satisfying the Lipschitz condition $|F(t, x_2) F(t, x_1)| \leq L|x_2 x_1|$, $(t, x_1), (t, x_2) \in \mathbb{R}^2$.
 - (a) (10 points) Show that if x(t) is a solution of this IVP on [0, c) for some finite c > 0, then it can be extended to be a solution on [0, c] unless $x(t) \uparrow \infty$ as $t \uparrow c$.
 - (b) (10 points) Assume further that $F(t,x) \leq C(1+x), \forall (t,x) \in \mathbb{R}^2$, for some constant C. Show that this IVP admits a solution in $[0,\infty)$.

Solution. (a) See Notes. Or, as we have extra assumption F is nonnegative, the argument can be simplified as follows: From $x' = F \ge 0$ we see that x is increasing. Hence, $z = \lim_{t\to c^-} x(t)$ always exists unless x does not tend to ∞ at c. Extend x from [0, c) to [0, c] by defining x(c) = z. By letting $t \to c^-$ in the relation

$$x(t) = \int_0^t F(s, x(s)) \, ds \, , \quad t \in [0, c),$$

the LHS tends to z = x(c) and the RHS tends to $\int_0^c F(s, x(s)) ds$. Hence

$$x(c) = z = \int_0^c F(s, x(s)) \, ds,$$

so x solves the equation also at t = c.

Solution Integrating the relation $x' \leq C(1+x)$ we get $x(t) \leq e^{Ct} - 1$ as long as the solution exists. Let $c^* = \sup\{c : x \text{ exists on } [0, c]\}$. By uniqueness of IVP, the solution x exists on $[0, c^*)$. If c^* is finite, by (a) it extends to be a solution on $[0, c^*]$. Then by solving the IVP taking c^* as the initial time, x extends beyonds c^* , contradicting the definition of c^* . We conclude that c^* is ∞ , done.

4. (10 points) Show that $\{\cos nx : x \in [0, 2\pi], n \ge 1\}$ does not have any convergent subsequence in $\|\cdot\|_{\infty}$.

Solution. Suppose on the contrary there is convergent subsequence $\{\cos n_k x\}$ we want to draw a contradiction. Since $\{\cos n_k x\}$ is convergent, it is precompact. By Arzela's theorem this subsequence is also equicontinuous. For $\varepsilon = 1/2$, there is some δ such that $|\cos n_k x - \cos n_k y| < 1/2$ wherever $|x - y| < \delta$ for all sufficiently large n_k . Now, take x = 0 and $y = \pi/(2n_k)$. For large n_k , $|y - 0| < \delta$, but $|\cos n_k 0 - \cos n_k \pi/(2n_k)| = 1 > 1/2$, contradiction holds.

5. Let $K \in C([a, b] \times [a, b])$ and define the operator T by

$$(Tf)(x) = \int_{a}^{b} K(x, y) f(y) dy.$$

- (a) (10 points) Show that T maps C[a, b] to itself.
- (b) (10 points) Show that whenever $\{f_n\}$ is a bounded sequence in C[a, b], $\{Tf_n\}$ contains a convergent subsequence in the sup-norm.

Solution. See Exercise.

6. (10 points) Show that there exists a unique nonnegative solution h to the integral equation

$$h(x) = 1 + \frac{1}{2} \int_0^1 \frac{1}{1 + x + y} h(y) \, dy,$$

in C[0, 1]. Suggestion: Work on the space $X = \{h \in C[0, 1] : h(x) \ge 0\}$. Solution. Define

$$Th(x) = 1 + \frac{1}{2} \int_0^1 \frac{1}{1 + x + y} h(y) \, dy$$

and verify it is a contraction. However, in order to apply the contraction mapping principle, you need to explain X is a complete metric space under the sup-norm, and (b) $Th \in X$. Many of you forgot to point out $Th \in C[0, 1]$.